Some Basic Concepts of Chemistry

Set - 1

Table 1.1 Base Physical Quantities and their Units

Base Physical Quantity	Symbol for Quantity	Name of SI Unit	Symbol for SI Unit
Length	1	metre	m
Mass	m	kilogram	kg
Time	t	second	s
Electric current	I	ampere	A
Thermodynamic temperature	T	kelvin	К
Amount of substance Luminous intensity	$n \\ I_v$	mole candela	mol cd

Q1. Which of the following pairs are the correct symbol and SI units of Luminous Intensity?

- a. T, Kelvin
- $_{
 m b.}$ Iv $_{
 m ,Candela}$
- c. n ,Candela
- d. n, mole

Ans. (b.)

Q2. Which of the following is the correct symbol for SI units of Temperature?

- a. T
- b. A
- c. S
- d. K

Ans. (d)

Q3. Which of the following is the correct symbol for SI units of electric current?

- a. I
- b. C
- c. A
- d. E

Set - 2

Table 1.2 Definitions of SI Base Units

Unit of length	metre	The metre, symbol m is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299792458 when expressed in the unit ms $^{-1}$, where the second is defined in terms of the caesium frequency $\Delta V_{\rm CS}$.
Unit of mass	kilogram	The kilogram, symbol kg. is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015×10^{-34} when expressed in the unit Js, which is equal to kgm³s-¹, where the metre and the second are defined in terms of c and $\Delta V_{\rm cs}$.
Unit of time	second	The second symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency $\Delta V_{\rm Cs}$, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s ⁻¹ .
Unit of electric current	ampere	The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge e to be 1.602176634 \times 10 $^{-19}$ when expressed in the unit C, which is equal to As, where the second is defined in terms of $\Delta V_{\rm cs}$.
Unit of thermodynamic temperature	kelvin	The Kelvin, symbol k, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380649×10^{-23} when expressed in the unit $J\mathrm{K}^{-1}$, which is equal to kgm²s²k¹where the kilogram, metre and second are defined in terms of h, c and ΔV_{cs} .
Unit of amount of substance	mole	The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 6.02214076×10^{23} elementary entities. This number is the fixed numerical value of the Avogadro constant, N_{Λ} when expressed in the unit mol ⁻¹ and is called the Avogadro number. The amount of substance, symbol n , of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.
Unit of luminous Intensity	Candela	The candela, symbol cd is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540×10^{12} Hz, $K_{\rm cd}$, to be 683 when expressed in the unit lm-W-¹, which is equal to cd-sr-W-¹, or cd sr kg¹ m²s³, where the kilogram, metre and second are defined in terms of h,c and $\Delta V_{\rm Cs}$.

Q1. Unit of plank constant is

a. J

b. J m

c. Js

d. J Kg

Q2. Symbol for SI unit of thermodynamic Temperature is a. T b. K c. both A and B

Ans. (b)

d. none

Q3. SI unit of Avogadro number is

```
a. mole
```

b. mole - 1

c. kg

d. unitless

Ans. (b)

Q4. Unit of amount of substance is

a. Gram

b. mole - 1

c. mole

d. Kg

Ans. (c)

Q5. Unit of frequency is

a. Hz

b. s⁻¹

c. Both

d. None of the above

Set - 3

Multiple	Prefix	Symbol
10-24	yocto	у
10-21	zepto	z
10-18	atto	a
10-15	femto	f
10^{-12}	pico	p
10-9	nano	n
10-6	micro	μ
10-3	milli	m
10-2	centi	c
10-1	deci	d
10	deca	da
10^{2}	hecto	h
10 ³	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	Т
1015	peta	P
1018	exa	E
10^{21}	zeta	Z
10^{24}	yotta	Y

Q1. Symbol for deca is

- a. d
- b. da
- c. de
- d. None of above

Ans. (a)

Q2. What is the prefix for symbol h?

- a. Hexa
- b. Hecto
- c. Hex
- d. None

Ans. (b)

Q3. What is the prefix for multiple 10

- a. deca
- b. deci
- c. giga
- d. tera

Ans. (a)

Q4. What is the prefix for symbol 'Z'

- a. Zepto
- b. Zeta
- c. Zeno
- d. None

Ans. (b)

Q5. What is the multiple for prefix Femto?

- a. 10⁻¹⁵
- b. 10⁻¹⁸
- c. 10⁻¹²
- d. 10⁻²¹

Ans. (a)

Q6. Select the correct pair for multiple and symbol of zeta .

- a. 10²¹, z
- b. 10⁻²¹, Z
- c. 10²¹, Z
- d. 10⁻²¹, z

Set - 4

Isotope	Relative Abundance (%)	Atomic Mass (amu)	
¹² C	98.892	12	
13 C	1.108	13.00335	
14 C	2 ×10 ⁻¹⁰	14.00317	

Q1. Relative abundance of carbon 12 isotope is

- a. 97.892
- b. 98.892
- c. 98.792
- d. 97.792

Ans. (b)

Q2. Relative abundance of carbon 13 isotope is

- a. 1.108
- b. 1.106
- c. 1.107
- d. 1.109

Ans. (a)

Q3. Atomic mass is represented in

- a. gram
- b. mg
- c. amu
- d. kg

Ans. (c)

Q4. Relative abundance of carbon 14 isotope is

- a. 1 X 10 ^(-10)
- b. 2 X 10 ^(-10)
- c. 3 X 10 ^(-10)
- d. 4 X 10 ^(-10)

Ans. (b) Q5. How many isotope of carbon exist in nature? a. 1 b. 2 c. 3 d. 4

Ans. (c)

Q6. Which of the following isotopes of carbon has highest relative abundance?

- a. Carbon 12
- b. Carbon 13
- c. Carbon 14
- d. All of the above

Ans. (a)

